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SUMMARY

This report derives and tests tractable approximate formulas for
coupling among very low frequency/low frequency (VLF/LF) waveguide
modes that occurs at boundaries that separate regions having different
ground conductivity. Although algebraically complicated, these for-
mulas are easily programmed and require far less computer running time
than the numerical mode-coupling algorithms used in full wave computer

codes.

To derive and implement the formulas, we substitute an equivalent

:
g
:
)
:

¥

parallel-plate waveguide for the actual waveguide in the short spatial
interval that contains the conductivity boundary. This approximation
is most easily applied to daytime ionospheric conditions. We derive a
set of coupled differential equations which have as their first-order

solution the well-known Wentzel-Kramers-Brillouin (WKB) approxima-
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tion. However, in contrast to the WKB solution, the method of the
present report gives results beyond the first-order and obtains solu-
tions to any order necessary to achieve specified accuracy. Although
derived for inclusion in future computer models of VLF/LF worldwide

atmospheric noise, the mode-coupling formulas could be used in ap-
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plications where a large number of propagation paths cause computer

-

running time to become a problem.
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PREFACE

To assess the performance of long-wave communication links in
nuclear environments, it is necessary to calculate the effect of the
environment on atmospheric noise as well as on the signal. Because no
data for atmospheric noise exist under nuclear-disturbed conditions,
the Defense Nuclear Agency is considering developing a computer model
that will predict the noise. A major difficulty in implementing such
a model is developing an accurate, yet tractable, means of calculating
coupling between waveguide modes over geologically complex regions
like Canada and Greenland. Accordingly, the present report develops
and tests mode-coupling formulas suitable for inclusion in future

noise models.
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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement

el
cal {thermochemical)/em”™

curie

.184 000 X E -2
L7000 00N X E +1

mega )oule/m2 (MJ/mz)
*giga becquerel! (GBq)

MULTIPLY » BY $ TO GET
TO GET «— BY & DIVIDE
angstrom 1.000 000 X E -10 meters (m)
atmosphere (normal) 1.01325 XE +2 kilo pascal (kPa)
bar 1.000 000 X E +2 kilo pascal (kPa)
bam 1.000 000 X E -28 meter® (m?)
British thermal unit (thermochemical) 1.054 350 X E +3 joule (J)
calorie (thermochemical) 4. 184 000 joule ()
4
3
1

degree (angle)
degree Fahrenheit
electron volt

erg

erg/second

foot

foot-pound -force
gallon {U.S. liquid)
inch

jerk

joule /kilogram (J /kg) (radiation dose
absorbed)

kilotons

kip (1000 1bf)
kip/inch? (kai)
ktap

micron

mil

mile {international)

ounce

pound -force (lbs avoirdupois)
pound -force inch

pound -force /inch
pound-rorca/rooe.2
pound-force/tnch2 (psi)
pound-mass (lbm avoirdupois)
pound-mua-(ootz {moment of inertia)

poum:l-ml‘u/foot3

rad {radiation dose absorbed)
roentgen

shake

slug
torr {(mm Hg, 0*C)

.745329 X E -2

ez (t°f + 459.67)/1.8
1.60219 XE -19
1.000 000 X E -7
1.000000 X E -7
3.048000 X E -1

1.355 818

3.7185412 X E -3
2.540000 X E -2

1.000 000 X E +9

. 000 000

183

.448 222 X E +3
.894 75T X E +3

D A b

1.000 000 X E +2
1 000 000 X E -8
2.540 000 X E -5
1.609 344 X E +3
2.834 952 X E -2
4. 448 222

1.129 848 X E -1
1.751 268 XE +2
4.788 026 XE -2
6.894 757

4.5356 924 X E -1

4.214 011 X E

1
o~

1.601 846 X E +1
1.000000 X E -2

2,579 760 XE 4
1.000 000 X E -8
1,459 390 X E +1
1.33322 XE -1

radian (rad)
degree kelvin (XK)
joule (3}

joule (J}

watt (W)

meter (m)

joule (1)

mot.ers (ms)
meter (m)

joule (J)

Gray (Gy)
terajoules
newton (N)
kilo pascal (kPa)

newton -aecmd/m2
(N-¢/m?)

meter (m)

meter (m)

meter (m)

kilogram (kg)

newton (N)

newton-meter (N.m)

newton/meter (N/m)

kilo pascal (kPa)

kilo pascal (kPa)

kilogram (kg)

kilogram -meter’
(kg -m2)

k(lcgrlrn/meter':l
(kg /m3)

**Gray (Gy)

coulomb /kilogram
(C/kg)

second (s)

kilogram (kg)

kilo pascal (kPa)

*The becnuerel (Bq) 18 the SI unit of radloactivity; 1 Bq = 1 event/s.
**The Gray {Gy) is the SI unit of absorbed radiation.
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SECTION 1
INTRODUCTION

Electromagnetic signals or noise at frequencies below 60 kHz
consist of a number of waveguide modes that propagate in a cavity
bounded sharply on the bottom by the earth and diffusely on the top by
the ionosphere. The excitation and propagation of those modes depend
on the electrical properties of the earth and ionosphere. For uniform
paths, such as a midday path over seawater, the modes propagate more
or less independently of one another. However, on so-called mixed
paths, along which the properties of either the earth or the iono-
sphere change, the modes become interdependent. That process is
called mode coupling and is strongest near transition zones, where
geophysical changes are most pronounced.

The most common and severe transition zones in the earth-
ionosphere waveguide are at the boundaries that separate large regions
of dissimilar ground conductivity. Other transitions are at the
terminator and at the edges of ionospheric regions subjected to solar-
induced or nuclear disturbances. This report mainly addresses ground
conductivity transitions, although the methods developed here are also
applicable to other types.

Waveguide transitions can be modeled as being either gentle or
abrupt, depending on whether they occur over distances that are longer
or shorter, respectively, than about one-sixth of the signal wave-
length. Gentle transitions cause only slight mode coupling, whereas
abrupt ones cause strong coupling. In the 15 to 60 kHz band con-
sidered here, one-sixth of a wavelength never exceeds 3 km.

Both the WAVEGUID code (developed by the Naval Ocean Systems
Center, San Diego, California) and the WAVEPROP code (developed by
Pacific-Sierra Research Corporation) can handle mode coupling on mixed
paths having either gentle or abrupt transitions. Data are sparse,
however; and, for lack of better information, geological maps ' sed for
this purpose show discontinuous ground-conductivity transitio s [Wes-

tinghouse, 1968). The codes, therefore, treat conductivity



a7
transitions as abrupt. In fact, coﬁ&uétivity transitions probably
occur over distances of several kilometers or more and should, there-
fore, be treated as gentle.

Propagation codes, which are always expensive to run, are espe-
cially costly for paths that traverse geophysically complex regions,
such as Canada. Although that expense is often manageable, it can
become overwhelming if the number of paths is large. A case in point
is prediction of low-frequency atmospheric noise, which is modeled by
calculating the energy that propagates from several hundred worldwide
noise sources. The number of propagation paths in that case is enor-
mous, and inclusion of a full-fledged, mode-coupling matrix at each
conductivity boundary is out of the question. Simplified equations
are needed to make such calculations tractable.

The present report addresses the problem of atmospheric noise
modeling. In order to derive mode-coupling'formulas that are inexpen-
sive to compute, we make three main assumptions. First, because the
conductivity transitions occur over distances much shorter than the
earth’s radius, we use a parallel-plate waveguide to model the earth
and ionosphere. That assumption allows calculation of mode parameters
from transcendental, rather than differential equations. It is more
easily applied to daytime or disturbed conditions, where propagation
is nearly isotropic, than to nighttime conditions, where the iono-
sphere is diffuse and isotropic and therefore more difficult to model
as a conductivity half-space. This report does not address nighttime
propagation. Second, we use a generalized Wentzel-Kramers-Brillouin
(WKB) method to determine the fields. That method is more accurate
than the usual WKB solutions (see for example Budden, 1985). The main
validity criterion is that the change in conductivity is gentle enough
that reflections of the modes can be neglected. The appendix shows
that criterion to be well satisfied., The third and final assumption
is that relatively few modes need be retained. That assumption is
valid because noise bursts are incoherent, and phase need not be kept
in mode summation (but is kept elsewhere). There is thus no need to
keep many high-order modes, which are usually included in computing

coherent signals to ensure that "nulls" are calculated correctly.

PR N 4L B IR B ey SN B S S e YR AP BN TR AR AR IV RVE RFY SV BN AW AV B DL AR ATE AV o NE oWl aFE N o N R A T . o A T T ot Sl T o S AR



The new formulas connect long-wave fields on opposite sides of
waveguide transitions and are in a form that can be used in future
noise models. They require much less computer time than equations now
used in sophisticated propagation codes; and they provide accuracy at
least commensurate with--and probably becter than--the accuracy of the

input data.



SECTION 2
TRANSITIONS IN GROUND CONDUCTIVITY

In this section, we discuss ground conductivity maps used for
long-wave propagation calculations. We also present sample data
showing that substantial approximations can be made in computing mode

coupling at conductivity boundaries.

CONDUCTIVITY MAPS.

Long-wave propagation does not depend strongly on conductivity
over regions where the conductivity exceeds approximately
3 x:10"3 S/m, because ground having such high conductivity reflects
very low frequency/low frequency (VLF/LF) waves almost perfectly. For
that reason, only slight mode coupling occurs at a boundary separating
two regions of high conductivity. However, ground conductivities
below about 1073 S/m strorngly affect the excitation and propagation of
transverse magnetic (TM) signals in the VLF and LF bands, and can
affect excitation of transverse electric (TE) signals. Such low
conductivities occur in Greenland and Northeastern Canada, as well as
certain other regions, including parts of the Soviet Union.

Figure 1 is an example of the conductivity maps used in long-wave
propagation calculations [Westinghouse, 1968]. It shows VLF conduc-
tivity values throughout most of North America. Analogous maps exist
for virtually all regions of the earth. The map divides Canada into a
number of large regions, with uniform conductivity assigned to each.
The regions are separated by abrupt boundaries.

Maps such as that in Fig. 1 are based on sparse data. There is
particularly little information about remote areas like Northern
Canada; for those regions, confidence in the conductivity values is
low [Westinghouse, 1968]. Although such maps are useful for inferring
average ground conductivity over long propagation path segments, their
resolution is not good enough to define the structure within bound-
aries that separate adjacent regions. The boundaries shown on the

maps are, therefore, not based on data, and are portrayed as abrupt
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simply for ease of presentation. Since other models are unavailable,
conductivity maps like that shown are used as inputs to long-wave
propagation codes.

We assert that conductivity transitions--although abrupt on the
scale of a continent--are probably rather gentle on the scale of a
wavelength. Transition zones between conductivity regions should,

therefore, be modeled as gradual rather than as sharp boundaries.

EFFECTIVE AND BULK GROUND CONDUCTIVITIES.

The electrical conductivity of the earth varies with depth, so
the effective ground conductivity "seen" by a wave in the earth-
ionosphere waveguide is an average over about a skin-depth § from the
surface. Because the skin depth depends on wave frequency, the effec-
tive ground conductivity exhibits a weak frequency dependence. The
map shown in Fig. 1, for example, applies fto frequencies from 10 to
30 kHz.

Figure 2 shows skin depth versus frequency for several values of
ground conductivity ¢ [Kraichman, 1970]. The VLF/LF communication
bands are indicated by the shaded regions on the right side of the
figure. For normal ground, where o lies between 10~2 and 10-3 S/m,
the VLF/LF skin depths lie between about 30 to 100 m; for poorly
conducting ground, wherg o lies between about 10~% and 10~2 S/m, the
skin depths lie between:about 300 to 1000 m.

Of all the conductivity boundaries shown in Fig. 1, those at
shorelines are expected to be the most abrupt. To examine that be-
havior, we use the data given in Fig. 3, which shows measured bulk
conductivity versus distance inland on the Olympic Peninsula in
Northwest Washington State [Bostick, Smith, and Boehl, 1977]. Al-
though not measured at a low-conductivity site, the data are among the
few available that illustrate the spatial dependence of conductivity
near a boundary.

Figure 1 shows that the effective conductivity of the Olympic
Peninsula is 10~2 S/m, which implies that depths within several tens
of meters from the surface contribute to the conductivity. Figure 3

shows in detail, on the other hand, that at such depths the
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conductivity is about 5 x 10~3 S/m at distances more than 20 km from
the shoreline, and increases as the shoreline is approached. The
conductivity is presumably 4 S/m on the sea side of the shoreline, but
no data were measured there.

We draw two conclusions from Fig. 3. First, the inland effective
conductivity on the Olympic Peninsula (¢ = 5 x 103 S/m) is within a
factor of 2 of the nominal value (¢ = 102 S/m) given on the large-
scale conductivity map. Considering the sparse data on which the maps
are based, such accuracy is as good as can be expected. Second, at
least on the Olympic Peninsula, the effective ground conductivity
requires more than 10 km to transition from its shoreline value to its
inland value. Although those data are site-specific, we assert that
qualitatively similar behavior occurs at other sites (where data are
not available), and that even more gradual transitions probably occur

between the inland regions depicted in Fig. 1.

FULL-WAVE CALCULATION OF FIELDS AT TRANSITIONS.

The WAVEGUID [Pappert and Shockey, 1972; Pappert, Moler, and
Shockey, 1970] and WAVEPROP [Field et al., 1976] codes calculate
waveguide mode parameters numerically, accounting for (1) the vertical
inhomogeneity of the ionosphere; (2) the curvature of the earth; and
{3) anisotropy caused by the geomagnetic field. That calculation
requires the solution of nonlinear differential equations for as many
as 10 to 20 modes. Each solution is subject to boundary conditions at
the earth and ionosphere. That procedure uses substantial computer
time, even on modern high-speed machines.

Despite their generality in other respects, however, those codes
use equations that are valid only when the earth-ionosphere waveguide
is uniform along the propagation path. Mixed paths are handled by
dividing the waveguide into a number of laterally uniform segments,
calculating properties of the full complement of modes in each seg-
ment, and then matching solutions at the segment boundaries. For
example, analysis of a trans-Canadian path across six conductivity
regions (see Fig. 1) would therefore require at least six times as

much computer time as a path of equal length over seawater, even if
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boundaries between regions were tr;;ééd as abrupt. For more realistic
conductivity transitions, like that illustrated in Fig. 3, WAVEGUID
and WAVEPROP must divide each boundary into many uniform segments--the
so-called staircase fit to the actual transition. That process. causes
a multifold increase in computer time.

To illustrate the above points, we use the WAVEPROP code to
calculate fields near transitions of varying abruptness. Figure 4
shows an example calculated for a transition from seawater (conduc-
tivity ¢ = 4 S/m) to Greenland (o = 10-3 S/m). The assumed frequency
is 45 kHz, which has a wavelength X of 6.8 km and a reduced wavelength
A/2n of about 1 km.

The solid line (Fig. 4) is the electric field calculated for an
abrupt transition; the dashed line is the field when conductivity

-changes linearly from 4 to 1073 S/m over a distance of 1 km. The

signal for the abrupt transition is different from that for the 1 km-
wide transition, so it is necessary to account for finite boundary
widths.

The signal exhibits peaks and nulls behind the transition. That
structure is caused by interference among modes excited at the
shoreline; we had to retain 20 modes to calculate the interference
pattern accurately. To model the 1 km-wide transition, we had to
divide the boundary into about 30 segments, most of which were con-
centrated between conductivity values of 1074 to 1073 S/m. All 20
modes had to be calculated in each of the 30 boundary segments, so the
total calculation required 600 (20 X 30) numerical solutions of the
field equations.

Figure 4 highlights four problems that must be addressed in
constructing a computer model for atmospheric moise: --(l) transitions
between geologically different regions must be accounted for where the Vi
conductivity is low, (2) the signal depends on the width of the tran-
sition, (3) no data exist that define the correct transition widths in
most regions, and (4) full-fledged calculations for gentle boundaries
require an enormous number of numerical solutions. 1t is therefore
impractical to use WAVEGUID or WAVEPROP directly in an atmospheric
noise model that accounts for propagation across regions of both low

and laterally nonuniform ground conductivity.

10 B

oS L A N WD

- AN
S -'Vx&.‘ri;«'.‘.h’)"u\‘{g'-, SO O




gl SR LR I B B )

e T 1

Vertical electric field (dB//1 pv/m)

0=4S/m o= 102 §/m

(V) -
10+ -
= eme Abrupt cransition
-20 . s 7
= 1-km wide transition
230 b -
| 1. ]
405 1 2 3 2
Rarige (Mm)
Figure 4. Effect of conductivity transition width

on 45-kHz signal propagation over sea-
water and Greenland ice (power = 10 kW,
aircraft altitude = 30,000 ft, antenna
inciination = 10 dcy to horizontal).
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NEGLECT OF BACKWARD REFLECTIONS.

The well-known WKB, or slowly varying, approximation greatly
simplifies propagation equations because, among other things, it
permits us to neglect the signals reflected backward from gradients in
the propagation medium. The WKB approximation can be applied when
changes in the propagation medium occur over distances greater than
the reduced wavelength \/2n (e.g., Budden {1985]). If changés occur
over shorter distances, the transitions should.be modeled as abrupt,
and backward reflections should be included.

The wavelength A lies between 5 and 20 km in the 15 to 60 kHz
communications bands, so the reduced wavelength A lies between 0.8 and
3 km-~-shorter than distances over which large-scale geophysical struc-
‘tures would be expected to change, and shorter than the lateral scales
indicated, for example, by Fig. 3.*¥ Those considerations lead to the
intuitive conclusion that conductivity transitions are slow enough
that reflections can be ignored, even near shorelines.

Mode coupling calculations require application of second-order
formulas, details of which are given in the appendix. We use the
gentleness of the conductivity transitions only to argue that backward
reflections can be ignored. The appendix also estimates the coeffi-
cient of modal reflection R from the transition zone. For the TE

modes, R is always small; for the TM modes, |R| < 0.02 in the VLF/LF

range.

*Although nongradual transition might occur in the immediate
vicinity of a shoreline, where the conductivity changes from 4 S/m
(seawater) to a lesser--but still high--value characteristic of wet
ground, the important transitions to low inland conductivities occur

more slowly, as shown in Fig. 3.
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SECTION 3
MODE-COUPLING EQUATIONS

In this section, we describe the model waveguide we use near
conductivity boundaries and cite the connecting formulas based on that

model. The appendix gives the derivations of those formulas.

PARALLEL-PLATE WAVEGUIDE MODEL OF TRANSITION ZONE.

The major complexity in the WAVEGUID/WAVEPROP class of codes is
caused by the diffuse ionosphere, which requires that nonlinear dif-
ferential equations for the height dependence of the wave admittance
bée solved numerically and iterated to match boundary conditions at the
ground. Those matching conditions give the so-called modal equation,
whose solution yields the attenuation rates and phase velocities of
all waveguide modes.

That numerical complexity can be avoided by representing the true
ionosphere by one that is uniform and sharply bounded. By properly
selecting the effective ionospheric height h and conductivity oy, it
is possible to define an equivalent, sharply bounded, earth-ionosphere
waveguide that gives approximately the same VLF/LF propagation as the
real waveguide [Wait, 1970].

The advantage of assuming a sharply bounded ionosphere is that
the wave admittance is given by a simple formula, rather than by the
numerical solution of a complicated differential equation. The modal
equation is then a transcendental equation, easily solved without
numerical integration. The disadvantage, of course, is that calcula-
tions made using a sharply bounded %odel waveguide are less precise
than those made using a diffuse ionosphere.

The question is whether the computational ease of the sharply
bounded model is worth the degraded precision. In most cases it is
not. But, for the special problem of computing mode coupling at
conductivity transitions, the precision loss is minor and acceptable,
The reason is that the sharply bounded model need be used only to

obtain commecting formulas that bridge each transition, which extends
/

13
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over perhaps 10 to 20 km--an infinité;imal distance on a global scale.
The WAVEGUID/WAVEPROP class of codes can be used on all other portions
of the path.

Figure 5 is a schematic diagram of our model. Propagation is in
the x-direction. The ground conductivity o has a constant value of
o = og] at ranges shorter than x = 0 and a different constant valiue
o = og]] at ranges greater than x = £. The transition from ogl to : |
OgII occurs in the interval 0 < x < 2, where ¢ = ag(x). The abrupt
boundaries shown in Fig. 1, and used in most calculations, correspond
to setting £ = 0 in our model. The task in the present report is to 1

derive formulas that connect fields at x < 0 to fields at x = 2,

subject only to the condition that ag(x) varies slowly enough to
permit us to neglect backward reflections.

‘ Outside the region 0 < x < £, we use full-wave codes of the
WAVEGUID/WAVEPROP class, which account for the round earth and diffuse
ionosphere but assume a uniform ground. The flat regions for 0 < x
and x > £ indicate the region where we match the full-wave modes to
the modes used in the parallel plate waveguide. 1In the diagram these
appear to have a finite extent, but, in fact, we treat them in the

calculations as if they were infinitesimally thin.

CONNECTING FORMULAS.

Tractable equations that describe mode coupling at a conductivity
transition are derived in the appendix. Here, we present those equa-
tions and define certain parameters. We first write the equations in
general notation, applicable to either polarization, and then special-
ize the notation to TM and TE modes. The equations given below omit

the geomagnetic field and are valid for daytime or nuclear-disturbed

ionospheres, but not for undisturbed nighttime ionospheres.

The refractive indices of the ionosphere and ground are:

2 io;
o= 1l- o (L

0
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and

- - _B (2)

where w is the angular frequency, ¢g is the permittivity of free
space, and ¢, is the relative permittivity of ground. Note that Og
€y, and hence ng, are functions of x in the interval 0 <= x < £.

The solutions of the Booker quartic [Budden, 1985] in the iono-

sphere and ground are:

2 2 2
9y = ni -1+ Cn , (3)
and
2 2 2
qgn = ng -1+ Cn , (4)

where Cp is the cosine of the eigenangle of the nth waveguide mode and
is found by solving the modal equation, given below. To simplify the
notation, we occasionally suppress the subscript n on q and C; those
quantities, however, depend on the mode number.

Our goal is to express each waveguide mode beyond the transition
(x 2 £) in terms of the modes incident on the transition. For the nth

incident mode, we write:

I -iksix
Fn(x, z) = ann(z) e (x = 0) , (5)

where, k is the wave number and, depending on the polarization, F is
the y-component of the magnetic or electric fields. In region I the
ground conductivity is uniform, so the height-gain function f(z) and
the propagation coefficient S% are independent of x. Both are func-

tions of x in the region 0 < x < [, because of the nonuniform

16



conductivity. The factor I'y (essentially the excitation factor of the
nth mode in region I) is determined numerically using
WAVEGUID/WAVEPROP solutions, which are presumed to be available for

x < 0. The propagation coefficient is simply

=1-C . ' (6)

1f we neglect backward reflections, the mode amplitude F%I(B,z)

on the far side of the transition is:

S (0) A_(O)
11 n n
Fn (£, z) = I‘nfn(l, z)‘/snu) An‘(f)

L
X [1 + Qn(ﬂ)] exp [-ik J Sn(x) dx] , (7)
0 .

where Ap is a normalization function, and is given by Eq. (19) for TM

and Eq. (27) for TE modes. Equation (7) is the sought-after connect-
ing formula. We present and discuss the terms of that equation below.
' The quantity Qn is the mode-coupling factor, and, as shown by its
formula, which is given below, accounts for energy scattered into the
nth mode from other modes. It also accounts for energy scattered from
the nth mode into other modes. Depending on the particular situation
and the mode number, Q can therefore be either positive or negative.
All terms other than Q in Eq. (7) involve only the nth mode, and
account for changes in the propagation coefficient and height gain
caused by the conductivity contrast between oggy] and og7.-

The mode-coupling factor Q, is the crux of the present report.

1t is given by:

(1)
Qn - Z Qn y (8)

i=1

17



where

r 50
(i) m m (i) (1+1) .
Qn = E T S _(0) Gnm * Gnn ’ (9
n n
m=1
m=n
>4
ci;)(x) = }E: [ B (%) G(i D xry ax' | (10)
x Jo
xX
¢tV ) =I g (x') dx' (11)
0

and

- A (0) A (x) Sn(x) + Sm(x)
Bam*) = A (x)“/A (0) A ()

/s (%) s (x)

X
exp {-ik [Sm(x') - Sn(x')] dx
J0
d
x = ; ax Snix)
ik.Cm (x) - ¢ (x)]
=0 ifn=m. (12)

The sum over the index m in Eq. (%) accounts for scattering into
the nth mode from all other modes. The term c{i+1) accounts for
scattering from the nth mode. In practice, it is seldom necessary to
carry modes higher than m = 5. The sum over the index (i) in Eq. (8)
accounts for various orders of scattering among modes. For example,
the term Qal) in Eq. (8) denotes single sgattering, which involves

only energy transferred directly between the nth and mth modes. The

18
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4
term QSZ) denotes second-order scattering, in which energy is trans-

ferred from all modes into the mth mode, and then from the mth to the

nth. The term Q83) denotes third-order mode scattering, and so

forth. In practice, retaining only the single-scattering term Qﬁl) is
adequate for situations in which g1 and gg11 exceed 1073 S/m. Higher
order scattering terms must be retained for conductivities lower than

10-3 S/m, although in no case did we find it necessary to retain terms
beyond (1) = 4.

Note that gn, in Eq. (12) is proportional to the term d¢,/dx [{p
is defined in Eq. (20) for TM and Eq. (28) for TE] and is also propor-
tional to the lateral gradient of the ground conductivity. For
uniform ground, that derivative vanishes and there is no mode cou-
pling, because in that case Q, = 0. Also, for uniform ground,

Sn(8) = Sp(0), £,(2) = £,(0), and AL(£) = AL(0) in Eq. (7); so
F%I(I) = F%(O), as must be the case in the absence of conductivity
transitions.

Some terms in Eqs. (7) through (12) have different forms for TM
modes than for TE modes. Below, we give those forms for the two

polarizations.

™ Modes.
For TM modes, the amplitude F, is given by:

F =2 H , (13)

where Zg = 377 1 and Hny is the y-component of the nth mode magnetic
intensity vector. The eigenangle cosines C, are the solutions of the

TM modal equation:

iC[Z vz ] cos kCh - [c2 + 2.2 ] sin kCh = 0 | (14)
i g i'g

where the relative TM ionospheric and ground impedances are

19
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Lt 2
Z, = q/nj , (15)
and
Z =q /n2 . (16)
4 g B

In the transition region 0 < x < 2, the impedance Zg, and hence C,, is
a function of x. For large conductivities (ag = 10“2), where

|Zgl << 1, the solutions to Eq. (14) are:

C,=(n-1/2) &=, n=1,2, ... (17)
The TM height-gain function is
iz
fn = cos kCz + —EE sin kCz . (18)
The normalizing function An is
A= — [02 - zé] ikh - —'— [zi - —9—5} -zp (19)
2ikC C -Zi q;ny
And the function Cn is simply
¢=2 . (20)

&

In the above equations, we have occasionally suppressed the x-

dependence and the mode-number subscript n.

20
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TE Modes.
For TE modes, the amplitude F, is given by

F = , (21)
n ny
where Eny is the y-component of the nth mode electric vector. The
eigenangle cosines C, are solutions of the TE modal equation:
iC[Z + Z ] cos kCh - [1 + C2 Z,Z ] sin kCh = 0 , (22)
i g i'g
where the TE relative ionospheric and ground impedances are
z, = lq (23)
and
Z =1 . 24
g /4g (24)
For large conductivities, where |Zg| << 1, the solution to
Eq. (22) is:
nr
Cn =~ n=1, 2, (25)
The TE height-gain function is
. iq
fn = cos kCz + —B sin kCz . (26)
The normalizing function An is
2
B S | PR - - q /e
A= 5T% {[1 [C] ](ikh + Zi) qg/C } . 27




And the function (n is

= . 28
¢ =qg (28)

DETERMINATION OF WAVEGUIDE HEIGHT h AND IONOSPHERIC CONDUCTIVITY o4
FROM WAVEGUID/WAVEPROP SOLUTIONS.

A major benefit of the localized parallel-plate-waveguide ap-
proach is that it permits the eigenangle cosines to be found from f
Eqs. (14) and (22), the simple modal equations. The WAVEGUID/WAVEPROP
codes, on the other hand, must solve nonlinear differential equations
and iteratively match boundary conditions to find C,. The latter
procedure requires much computer time and may be labor-intensive for
even a skilled operator. The task remains, however, to find a com-
bination of effective waveguide height h and ionospheric conductivity %
oj that gives values of C, that are nearly the same as those obtained '
using WAVEGUID/WAVEPROP in conjunction with realistic diffuse iono-
spheres.
The starting point for finding h and oy is the series of values
of G, calculated with WAVEGUID/WAVEPROP in region I (x < 0O--see
Fig. 5). By using either the equation fdr T™ {Eq. (17)] or for TE
[Eq. (25)], we can write:

h =~ A . (29)

! 2[Cn+1 - Cn]

Strictly speaking, the value of h, given by Eq. (29) depends on the
mode number n, but, in practice, h varies only slightly with n (in our

experience, variation of h is less than 5 percent. We therefore use

N
h=i h (30)
TN n'

where N is typically a number on the order of 5.
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4
After finding h, we then use the ﬁ;de equations [Eqs. (14) and
(22)] to find o;. Specifically, we insert C, (from WAVEGUID/
WAVEPROP) , Zg, and h into those equations and solve for Zj, which
defines the value of o0j. As the case for h, the values of oj calcu-
lated in that manner depend only slightly on mode number n, so we use

a value averaged over the important modes.

7 23
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SECTION 4
TEST CASES

In this section, we present sample calculations that test the
approximate formulas of Sec. 3 against exact ones made with the
WAVEPROP code. We also discuss practical aspects of applying those

formulas.

PARALLEL-PLATE WAVEGUIDE.

Figure 6 illustrates how closely the parallel-plate model
waveguide approximates the actual waveguide. It shows ReC, versus
ground conductivity for a frequency of 45 kHz and the five lowest
order TM modes. The values of C, (denoted by dots in the figure) were
calculated numerically using WAVEPROP and account for earth curvature,
the diffuse height-profile of the ionosphere, and the geomagnetic
field. We assume north-south daytime propagation and a 60 deg geomag-
netic dip angle.

To define the equivalent height and conductivity of the parallel-
plate waveguide, we insert og = 10-2 S/m and the corresponding C,
values from Fig. 6 into Eqs. (14), (29), and (30) to find h = 59 km
and o4 ~ 10™% S/m. Substituting those values of h and gy back into
Eq. (14) gives the values of ReC,, indicated by the solid lines in
Fig. 6.

The agreement between the "exact" (WAVEPROP) and approximate
(parallel-plate waveguide) results is excellent for all five modes and

*

the entire range of ground conductivities. It would be even closer

for frequencies lower than 45 kHz, which are less affected by the

*The first mode at 1072 S/m is the only one in error by a substantial
amount. This mode is the most oblique; we expect it to be affected
the most by the curvature of the earth, which we ignore. That mode

is typically not as important as the second, since it has higher
attenuation and lower excitation. Moreover, at high conductivity

(ag > 1073 S/m) there is very little mode coupling, so the error indi-
cated does not matter for our analysis. However, this mode is the
Brewster's mode (i.e., C = Z,) for o, < 10-3 S/m, where mode

coupling is important. In this region the modes match very well.
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earth’s sphericity and less sensitive to waveguide parameters. Cal-
culations (not reproduced here) show equally close agreement for TE
modes. The modal equations [Eqs. (14) and (22)] may therefore be used
to find CL(X) across the conductivity transition. That simplification
reduces computer running time enormously. [Note that although

Eqs. (14) and {22) give accurate values of |Cn| ~ ReC,, they do not
provide accurate values of ImC,, which govern the waveguide attenua-
tion rates. Because ImC, << ReC,, and because the assumed transition
zones are too narrow (£ << 100 km) for attenuation to be important,
that inaccuracy causes no problems for the application addressed in
the present report. However, the parallel-plate model waveguide
cannot be used to approximate long (> 100 km) path segments where

attenuation is important and must be calculated accurately.]

MODE COUPLING.
To examine the dependence of mode coupling on the conductivities
ogl and OgIl. We assume a conductivity transition where ag(x) varies

according to the formula

logy g 9, (%) = =5%/4 . (31)

If we use this logarithmic variation, the results depend only on Ogll:
not on the scale length £. In this case, it is true that mode cou-
pling depends only on the endpoint values ogl and OgIl-

If nonlogarithmic transitions are used, the mode coupling depends
on transition shape as well as on the endpoint values. That depen-
dence is slight, however, and to a first approximation it can usually
be ignored. Mode coupling at a boundary can therefore be calculated
by specifying og1 and ogi1 and using any convenient model for og(x) in
the zone 0 < x < £, provided that the transition is gentle enough so
that reflections can be ignored. As previously mentioned, that near-
independence of mode coupling on transition shape is important, be-
cause there are virtually no data on how og varies within transition
zones. R

To illustrate how mode coupling depends on the conductivity

contrast at a boundary, we assume a second-order (n = 2) TM mode of
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unit amplitude incident on a transition zone where the conductivity
changes from ogy = 1 S/m to values of og77 that range from 1 to

10~ S/m. No other modes are present for x < 0, so

1 forn =2 ,
Fn = (32)

0 forn = 2 ,

in Eq. (5). We further assume a frequency of 30 kHz.

Figure 7a shows the amplitude of mode 2 versus og11, and
Figs. 7b-e show the ground-level amplitudes of modes 1, 3, 4, and 5,
respectively. For ease of comparison, the scales used in Figs. 7a-e
. are consistent. Each figure shows plots of several graphs correspond-
ing to the various orders of coupling (values of the index i) dis-
cussed above in conjunction with Eqs. (8) and (9).

Figures 7a-e show that when OgIl exceeds about 3 x 103 S/m, the
amplitude of the second mode remains near unity and the amplitudes of
the other modes are small. For values of og11 below 3 x 10-3 s/m,
however, the amplitudes of modes 1, 3, 4, and 5 increase at the ex-
pense of mode 2. That behavior confirms our earlier assertion that
mode coupling is weak for high ground coﬁductivities, but can be
strong for low conductivities.

Another conclusion to be drawn from Figs. 7a-e is that retention
of only first-order coupling (i = 1) usually provides accurate
results, although it is necessary to retain as many as three or four
orders at the lowest values of 0gi1- In no case do we find that

orders higher than i = 4 contribute significantly.

GENTLE VERSUS ABRUPT BOUNDARIES.

In our final example, we compare mode coupling across gentle
boundaries to mode coupling across abrupt boundaries, such as those
indicated in Fig. 1. We make that comparison because, as discussed in
Sec. 2, mixed-path calculations usually assume abrupt boundaries; and,

notwithstanding the fact that the WKB approximation is invalid for

27
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abrupt boundaries, the WAVEGUID/WAVEPROP codes omit backward-scattered
modes for computational convenience.
The formulas for the gentle boundary are presented and discussed

in Sec. 3. For an abrupt boundary, where £ = 0, we have:

+ 1 _ Z - 127 '
rnz__:—++z:rm el (33
2ikS A S ~ 8§
nn m=1 n

where the superscripted plus (+) and minus (-) denote, respectively,
parameters in regions I and II. Backward reflections are also omitted
from Eq. (33). This is consistent with WAVEGUID and WAVEPROP.*

We again assume that ogl = 1 and only a second-order incident

mode:

- 1 ifn=2,
r = (34)

n 0 ifnw?2 ,

but here we use a frequency of 45 kHz, in order to give us a better
test of the method. Figure 8 plots, as a function of og11, the lowest
five T™M mode amplitudes at the beginning of region II, i.e., where
x = 0%,

The results for the abrupt and gentle cases are about the same if
Ogll > 103 S/m, again confirming that almost any model will give good
results if the ground conductivity is high enough. However, for
ogI1 < 10~%4 S/m, the differences between the two boundary types are
substantial. The first (n = 1) mode is the so-called Brewster mode
which, although strongly excited, is very heavily attenuated over
poorly conducting ground. At great distances beyond the boundary, the

second (and least attenuated) mode is the most important. Figure 8

*In the sum of Eq. (33), ZE ——Zg, L'Hospital’s rule gives, for
the m = n term,

>|>
3 +Ii8
w l %]
3 +1I3 1
b= B |
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shows that, for og11 < 104 S/m, the abrupt and gentle models give
mode-2 amplitudes that disagree by 6 dB. As discussed in Sec. 2, we

believe the gentle boundary to be more realistic than the abrupt.'
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SECTION 5
CONCLUSIONS

In this report, we have derived formulas for approximating VLF/LF
waveguide-mode amplitudes beyond a conductivity boundary in terms of
the mode-amplitudes incident on that boundary. Although algebraically
~complicated, those formulas are easily programmed and require far less
computer running time than numerical mode-coupling algorithms used in
"exact" computer codes, such as WAVEGUID/WAVEPROP. The formulas have
two desirable features: they are computationally simple and they
depend mainly on the ground conductivity values on either side of a
transition, but only slightly on the conductivity variation within the
transition itself. Data from available maps of worldwide ground
conductivity can therefore be inserted directly into the formulas.

The mode-coupling formulas are subjected to three areas of ap-
proximation, which we believe are valid under most circumstances
encountered Iin practice. First, and most important, we substitute an
equivalent parallel-plate waveguide for the actual waveguide in the
short spatial interval that contains the transition zone. Second, we
ignore reflections from that zone, which requires that all conduc-
tivity changes within the transition zone be gradual (occurring over
distances at least as long as the reduced wavelength A/2x). Third, we
neglect phase and use only the magnitudes of the modes when performing
mode sums. However, the mode-coupling equations [Eqs. (7-12)] are
derived complete with phase terms that can, at the discretion of the
analyst, be retained.

The latter approximation--neglect of phase--is appropriate for
models of worldwide noise because such models divide the earth into a
large number of sections that behave as equivalent noise transmitters.
Each noise transmitter contains many lightning sources that are uncor-
related and noncoherent. Moreover, noise models involve average
rather than instantaneous values, and such averages smear out the
nulls that occur on signals from coherent transmitters. The main

effect of phase in the mode sum is to create nulls; and accurate
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calculation of field strength in a null requires retention of many
modes. Neglect of phase in the mode sum--but not elsewhere--
eliminates nulls and thus substantially reduces the required number of
modes.

Although derived for inclusion in future computer models of
VLF/LF worldwide atmospheric noise, the mode~coupling formulas can be
used in any application where the number of propagation paths is so
large that the computer running time becomes a problem. However, when
the formulas are used to describe coherent signals rather than noise,
the phase terms must be retained. Moreover, because retention of
phase necessitates inclusion of more higher order modes, and because
the effective height h depends somewhat on mode number n, the mode-

specific h, [Eq. (29)] should be used instead of the average h
[Eq. (30)].
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APPENDIX
DERIVATION OF EQUATIONS

INTRODUCTION.

This appendix derives our method for efficiently calculating the
coupling of modes across a region of changing ground conductivity. We
assume that the earth and ionosphere can be modeled locally as a
parallel-plate waveguide. That assumption leads to equations for the
propagation constant, which can be quickly solved numerically in the
case of the TM modes and analytically in the case of TE modes. 1In
that way, we avoid the complicated mode-coupling calculations used by
the more precise WAVEPROP program. Here, we restrict our attention to
normal daytime ionospheric conditions, but the method can, in prin-
ciple, be extended to nighttime conditions.

We use a generalized version of the method developed by Wentzel,
Kramers, and Brillouin for quantum mechanical applications--hence the
name WKB method. 1In essence, they replaced the search for a wave-
equation solution, which is a rapidly varying function, by a search
for a more slowly varying function. Under certain conditions--
typically, when the medium is changing slowly over a wavelength--the
slowly varying function can be assumed to be a constant. That is
known as the WKB approximation--or, stated more precisely--the first-
order WKB approximation. We do not make this assumption, however, but
find a coupled set of exact differential equations for this more
slowly varying function. Thus, our method could be called a general-
ized WKB method. 1If we account for both mode coupling and backward
mode reflection from the boundary, the equations are far too complex
to be solved quickly. Therefore, we make the WKB-like assumption that
the change in the ground conductivity is slow enough that backward
reflections can be ignored. At the end of this appendix we test that
assumption by making the opposite assumption--that mode coupling can
be ignored--and find that the reflection is very small.

We use Budden's renormalization of the magnetic field (see Budden

[1985}). Thus the field H used in this appendix is, in fact, the
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magnetic field multiplied by the impedance of free space. The wave
impedances are therefore dimensionless and should be multiplied by
377 @ to put them into MKS units. The above also removes the distinc-
tion between the magnetic and electric fields. In this appendix, we
often combine the standard TE (Ey, Hy, H;) or T field components (Hy,
Ey, E;) into a new field called F. That notation allows us to derive
one set of equations that is applicable to both TE and TM modes.

We also assume that the impedance of the earth is independent of
the mode parameter (C,). As shown later, that approximation is tan-

tamount to assuming qg is independent of C,. The definition of qg is

C2

2 21172 _ (.2 _ ,]|1/2 1 n
qg = [ng 1+ Cn] = [ng 1] l.+ 7 n2 ] . (35)
4

The mode dependence is second order in Cp/ng. If we make the restric-
tion that |[C,| s 0.5, then the largest error is at very low conduc-
tivity (og ~1075 S/m), where it is about 2 percent. That approxima-
tion is not critical to the analysis, but allows analytic forms to be
derived for the TE case. Without that approximation, integrals over
height from O to =, would have to be changed to integrals from -» to
©, and some other analytic forms will change.

Many quantities used here are functions of distance from the
transmitter (denoted by x), height above the ground (z), and mode
number (n). When it dces not cause confusion, we omit the function
parameters or mode number subscript in order to avoid visual com-

plexity.

MODEL.
We treat the earth as a conducting half-space below z = 0, and
the ionosphere as a conducting half-space above z = h. The index of

refraction for the earth and the ionosphere is, respectively,

2 o
n =€r—i:’;s—, (36a)
& 0
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nl=l - L. (36b)

Here, we assume that og 2 1072 S/m, but we make no assumption (momen-
tarily) about oj. We also assume that the conductivity of the earth
is constant for x < 0 and x 2 £, but that it changes in the region

0 < x < 2. For our purpose, the conductivity is considered to be
continuous. We assume that the boundary is far enough from the trans-
mitter that the total field is made up of a sum of fields of in-

dividual waveguide modes. For example, the electric field is

= E . 37

n

MAXWELL'S EQUATIONS.
By using Budden’s renormalization we can show that Maxwell's

equations for the TE case become:

Hx = ik 3z (38)
H, = - 1% 3 (39)
and
2 1 g 3
ikn(x)-:l—k'a? Ey+&ﬂz=0. (40)

For the TM case, Maxwell’s equations become:

2 dH

ikn Ex =" 37 (41)
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e

2 Y
ikn Ez =5 (42)
and
1 aZH 3E,
-ikH + 5 b A =0 . (43)
ikn” 9z

FIELDS WHEN o, CHANGES.

To illustrate our technique, we use Fy, the y component of the
field, in the region where ground conductivity is not changing, i.e.,
x < 0. (Note that F, = Ey in the TE case and Fy = Hy in the TM.) The

Y
form of Fy is well known; i.e.,

F = E £ (z) [r e IKSX , g eiks"] . (44)
y n n n
n

Here f,(z) is the height gain function, Iy e~ 1kSx represents the
forward-moving wave, and Rp elkSx represents the backward-moving wave,
i.e., that part of the wave reflected from the boundary. We normalize
the height gain to one on the ground, so that the excitation (T'y) and
reflection (R,) factors represent the forward and backward field on
the ground at x = 0,

In the region where the ground conductivity is changing we need a

form that reduces to Eq. (44). Thus, for x = O,

¢ -]

Fy = Z fn(z, X) [An(x) + Bn(x)] . (45)

n=1

Here, Ap(x) represents the forward-moving wave, B,h(x) represents the
backward-moving wave, and f,(z, x) is the height gain, which is
dependent on x. Here, A, and B, are arbitrary functions of x. We
place restrictions on the height gain term f,, and determine what form

An(x) and Bp(x) must have to satisfy Maxwell's equationms.
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The restriction on f, is that locally it must satisfy the wave

equation

2
-"’—3 + k2 % x, )| £z, x) =0, (46)
dz n

where q2 = n2(x, z) -1+ C%.
We discuss the height-gain term f,, in more detail below; there we

show that f, is orthogonal in the sense that
fn(z, x) fm(z, X) dz = An(x) 6nm . (47)
0

The boundary conditions satisfied by f,; determine the modal equation
that gives the value of C,. Thus, the information about the ground
conductivity is contained in f,, so we can restrict ourselves to the
region within the waveguide (0 < z < h).

Equations (39) and (42) can be written:

F=-;—F. (48)

(So F, = H; in the TE case and F, = ~E, in the TM case.) The form of
F, that is consistent with Eq. (45) and that reduces to the correct

form for x < 0 is

F, = Z £ S, (An - Bn) . (49)

n=1

We combine Exs. (40) and (43) (in the waveguide) to give:

2
[1k--1—i—]Fy=-—a—F. (50)
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The functions A,(x) and B,(X) must satisfy Eqs. (48) and (50). To

find out what this requires of A,(x) and B,(x), we use Eqs. (45) and
(49), along with Eq. (46) and the orthogonality of £, to derive the

following after some algebra. (Here, a prime symbol denotes the

differentiation with respect to x.)

[+ ]
AL+ Bn + 1ksn(An - Bn] + E K (Am + Bm] =0 , (51)
m= :
S ~ S
Al - Bn + 1kSn[An + Bn] + -S—n [An - Bn) + E Kmn(Am - Bm] i =0
' m=1
(52)
Here,
K = - £'(z) £ (z) d 53)
mn An m'Z n'? Z - (
0 _

Adding Eqs. (51) and (52) yields:
Sé 1 ~ Sm
An + ikSnAn + E'S—r; [An - Bn] + 5 z Am 1+ §;

S
m
+ Bmll - 5;]} Kmn =0 . (54)

Subtracting those equations from each other gives
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Now we define A and B in terms of a and b, which are functions that

vary more slowly with respect to x, and we let

. X ' ’
a_(x) -ik fy S _(x') dx
A = e ’

" A

and

b (x) ik [§ S _(x') dx’

B = e

n

/s (x)
Thus Eqs. (54) and (55) become

r x ’ ’
s/ 2ik [ S (x') dx
— b e
S n

fu

{
S TE
e

+
N =

S -5 ik [y [Sm(x') + Sn(x')] dax’
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K

(56)

(57)

}E: s+ S_ -ik [ [Sm(x')-Sn(x')] dx’

m 0o, (58)



s! -2ik 3 S _(x') dx'

., .1 m
b* - 23 an e
n
had - - X ' RN '
1 Z S, " Sn ik [o [Sm(x )+S_(x ,] dx
+ 35 ——| 3, ®
m=1 /Sn Sm
S +S ik [X [s (x')-S (x')] dx’
s |m_m oy o VO Lm n K _ =0 . (59)
n m

Eqﬁations (56) and (57) would be the WKB approximation if ap(x) and
bh(x) were constants. Thus, Egqs. (58) and (59) become the second-
order WKB approximation. Up to this point, we have made no approxi-
mations. On pp. 66-68 we show by direct calculation that the reflec-
tion term is very small. Therefore, we can neglect reflections. We
can now set by = 0 in Eq. (58).

Removing the nth term from the summation in Eq. (58) yields:

-] X
S + S -ik [ [s (x')-S (x')] dx’
ar'1+anxnn+%z —— a_e Oim n K =0,
m=1 ‘Sm Sn
men
(60)
That reduces to a very simple form if we let
- Jo R dx’
an(x) = an(x) e . (61)

Recall that, from Eq. (53),
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Y IS

1 )
Knn(x) -5 Jm fn (z) fn(z) dz . (62)
0

n

However, from Eq. (47) we see that

Aé(x) = 2 Jm fé (z) fn(z) dz . (63)
0
So,
nn 2A n '
n
and hence,
X
J Knn dx = % in [An(x)/An(O)] {(65)
0

Thus Eq. (61) is

Fn(o)
an(x) = an(x) T (%) (66)
n
So, from Eq. (60) it follows:
[ o]
ar’1(X) = E gnm(X) am(X) , (67)
m=1
men
where for, m » n,
47
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O '.'j
o - - 1 s, +s.| /A0 A
nm 2 VAN ~ A_(x) A_(0)

-1k fg (sm-sn) dx’

K . (68)

X e
mn

We show below that the function Ky, (when m »# n) has the form:

1 1 1 a8 . (69)

where ¢(x) = qg(x) for the TE case, or ¢ (xX) = Zg(x) for the TM.
Thus putting Eq. (69) into Eq. (68) we get

x ’
. e-ik Jo(SaSa) e R
g (x) =
nm 2ik  JS_ sm[sm - an ~ A_(0) /A A0

Here, we used

(70)

o L p
LIS ’lf',( ey _)(‘.'f. -

C2 - C2 =1 - C2 - [l - Cz] = 82 - S2 = [S -8 ][S + S ]
n m m n m n m nj{m n

(71)

We can integrate Eq. (67) directly, then:

.-
(5

'('_

® X
an(x) = an(O) + Z J gnm(x’) am(x') dx’' . (72)
m=1 0
men
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We can solve Eq. (72) as we would a perturbation or scattering
series. That is, we can use Eq. (72) to find ap(x’') and substitute
this into the integral, getting: '

® X
an(x) = an(O) + E am(O) J gnm(x') dx’

m=1 0
men
-] -] X x'
+ Z 2 J dx’ gnm(x') [ gmz(x") ai(x") dx"
m=1 £=1 0 0
men £vm

(73)
We can repeat this process an arbitrary number of times. If we define

gnn(x) = 0, and assume summation over repeated symbols, the notation

is simpler:

a_(x) = a_(0) + 1 a™0) + 62 a®0y + 63 G™0) 4 eee  (74)

nm nm nm

where

X
¢V - J g (%) dx , (75)
0

X X’
(2) ’ ! " i}
Gnm (x) = E J dx gnll(x ) J gzm(x )y dx (76)

X
- E J ax’ g_,(x") 651 (xy (77)
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or, in general:

X X" )
Gr(u_i)(x) = E .1.. E J dx' gnz(x') e s e J dx'l' gkm(xlll)
k

2

>4
= z J ax' g _,(x') cii’l) (x') . (79)
2

0
For x = 0, and ignoring reflections, we have, from Eq. (44):

[o2]

y Z I‘nfn(z) . (80)

n=1

|
i

At x = 0, we have, from Eq. (45):
@
Fy = E fn(z, 0) An(O) . (81)

n=1

These must be equal. So, since from Eq. (56) and Eq. (61)

A_(0) = a (0)//5_(0) = a (0)//5 (0) , (82)
we see that
an(O) = I‘n ./Sn(O) . (83)

That is the initial condition on a.
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Putting this all together gives, for 0 < x < £,

o

S _(0) A_(0) -ik X' s (x') dx’
n n 0 'n
Fy(x, z) = E Fn[l + Qn(x)] 5 0 An(x) fn(x, z) e

n=1 n

(84)

This is Eq. (7) of Sec. 3. 1In Eq. (84), we define the mode-coupling

factor Q, as:

. (1)
Q, = E Q. . (85)
i

and

-]

S (0) T
(1) _ z : (1) “m Tm (i+1)
Q, (x) = Com (x) MO A . (86)
A n n
m=1
meén

Here Qgi) represents the ith order scattering. In the limit, as T}

goes to zero, we have:

=]

S (0)
_ (1) m

r_[1+0Q(x)] = E E Som Y 5705 T - (87)
m=1 i=l n

HEIGHT GAIN AND MODAL EQUATIONS.

TE Case.
In the TE case, we write the height-gain function as ep(z).
Recall that it is a solution to Eq. (46). The boundary conditions

require that e, and
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. 1 4

—_ = 88
a ™ ik 3z ©n (88)
be continuous across the boundaries at z = 0 and z = h. Thus, we can

define an impedance function:

e (z2)
2(z) = . (89)
e (2)

Therefore, the boundary conditions are

2(0) = = =2, (90)
qg g

and

1
h = e —— o - .
Z(h) a z L (9L)

e

The solutions of Eq. (46) that satisfy Eq. (90), Eq. (91), and the
radiation condition (i.e., that the field must go to zero at
infinity), and have e,(0) = 1 are:

[ 2 cz -1 . -iq,k(z-h)
‘i g -iCkh i
z [Czi 7 1] e e for z =2 h , (92)
q
e =1 cos Ckz+i—ég sin Ckz for 0 <z <h , (93)
iq kz
e & for z < 0 . (94)

Recall that the solution to Eq. (46) is a superposition of up- and
down-going waves whose amplitudes are constants to be determined by

the boundary conditions. Thus, in the three regions there are six

52



constants. Two of them are determined by the radiation condition and
one by the normalization condition. In reality, the boundary condi-
tions at z = 0 and z = h determine four more constants, but there are
only three to be determined. That fact places a restriction on the

value of C, which is expressed by the modal equation:

Czg v+ 102 - 1 sickn (95)
cz -1 ¢z, +1° ‘
g i
Note that we can write Eq. (95) as
iC[Z + 2 ] cos Ckh = [l + C22 Z ] sin Ckh . (96)
i g, i7g

The last form is particularly easy to solve numerically. When og 1s

very large, Zg is very small, so:
iCZi cos Ckh = sin Ckh . (97)

(0)

To zeroth order in Zi’ Cn = nn/kh, while te first order

L_ 0 1
“n ® G [1 - 1Z,/kh ] : (98)

We solve Eq. (96) numerically using the Newton-Raphson method starting
with C = Cﬁl).

T™ Case.

In this case, the height-gain functlon is written as hp(z) and

the boundary conditions require that hp and

h (99)
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En(z)

Zn(z) = hn(z)

G - Zg G+ Zi

Equation (106) may also be written:

be continuous across the boundaries. Thus,

q
2(0) = - B --2
n2 &
B
and
9
Z(h) = — = Zi
™
This gives:
([ Cc -2 ~iCKkh —iqik(z-h)
m&e € for 2
i
Z
hn(z, X) =4 cos Ckz + 1 75 sin Ckz for 0
iq kz
| e & for z
and the modal equation
C+z, C-1244 ,-21Ckh

v

must also be continuocus. The boundary conditions are then:

(100)

(10L)

(102)

(103)

(104)

(105)

(106)
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-

2

iC[Z + Z ] cos Ckh = [C + 2,2 ] sin Ckh . (107)
i g 1g

The zeroth order solution for small Zg is then

o _ (. _1 =
Cn = ln 2] h (108)

and the first order is

(Ly (0 ~ 1
TG [l T+ iZikh] . (109)
ORTHOGONALITY OF MODES.

To prove the orthogonality of f,(z, x) we note that, since fy is

a solution of Eq. (46), we can write:

]
2 2
A T A R (110)
m, 2 n n,2™m n m] nm
dz dz
If n » m, then
1 2 3 3
fof & = — a“z[fmszfn*fna—zfm]dz
0 k[cﬂ—cﬁ_ 0
\I.l. ll‘}

(111)

The radilation condition ensures that f; -> 0 as z -> ©». The fact that
fn and 0f/dz are continuous across the boundary at z = h means that
there is no contribution to the integral at z = h. If the lower limit
of the integral goes to -®, then clearly, Eq. (111) would reduce to
zero. However, using the current limits, since fh(0) = 1, Eq. (111)

reduces to:
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. d Jd .
J fn(z)fm(z) dz = ‘—2—‘—2—2* [ a—z— fm(O) - 8_2 tn(O) ] . (1].2)
0 k [C - C ]

n m
However, from Eq. (93), we see that in the TE case:

3
37 fn(®) = tka, (113)

and, from Eq. (104), in the TM case:
P fm(O) = lng . (114)

Since we assume both are independent of the mode, this gives us or-

thogonality.

FUNGTIONS A,(x) AND Kuym(x).
We calculate Ap(x) directly from Eq. (47) and from the functional
forms of f,(z, Xx). 1In the TE case, we use Egs. (92) and (93). So

after some manipulation and using Eq. (95), the modal equation, we

get:

?:

x

F
- q q 2 f’.
) D S - I -*3
{ An(x) = 71k { - ¢ [1kh + Zi} [1 [C] ]} . (115) n
L L L (S B :
3
1 ;
R In the TM case, using Eqs. (103), (104), and (106) we get: i:
r -
' &
¢ z 2 z.)2 ¥
-1 )&, . _ 1 -] -8 Y
d A9 = 7k { 2" [ikh * [ ¥ zi] 2 2 ] [1 [ c] ]} : e
14" ” i ’
: (116)
3 To compute Kynp(x) for n = m, we start from Eq. (46) and take the

derivative with respect to x. The result is:
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2
B b kg E 4 KOE = 0, (117)

2 n nn nn :
dz »

Multiplying Eq. (46) for mode m by f;| and subtracting Eq. (117) multi-
plied by f, yields:

2 2
£ 8 p e 2 nlqrq et +k2[q? - o) £1E <0 . (118)
m 2 'n n . 2 m nnnm n J nm
dz iz
Assuming n » m:
£'f dz = - L az Zle g Be |,
n m 9 2 2 dz mdz n ndz m
0 k [C - C ] 0
n m
(119)
which gives (after due attention to the boundary conditions):
aft’ af
1 1 1 , _m
Knm T T A 2 9 9 [ dz fn az] (120)
"k [C - C ] z=0
m n
Dy
®
v
If we write :,:%
b
)-(..\ ;?J\
f (z, x) = cos Ckz | 2 C"’ sin Ckz , (121) oy
F.,
by
then Eq. (120) becomes ﬁ{;
|_::"':
1 1 3 -
= = — 122 y
Knm + An ? 2 ax g(x) L] ( 2 ) *_‘?
: ik[C‘ -c ] e
m n '._"‘x
g
vﬁ
where {(x) = g in the TE case and ¢(x) = Zg in the TM. ;F
®
pV'
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MODE COUPLING AT SHARP BOUNDARY.

Using an adaptation of the method of Pappert and Shockey [1972],
we can compare our method with the results from methods using a sharp
boundary.

First we write Fyn and F,, as the y and z components of the field

of the nth mode. In the TE case, we take F, = H, and in the TM case,

F, = -E,. If we write:
0 1
L= ) , (123)
1 3"
l+—2—§ 0
k™ dz
and
o)
- yn
- /
un . J , (124)
zZn

Ju = - —=— ——u_ ., (125)

1f né is not a function of x, then X appears only in an exponesntial

term, as for example;

—ikSnx
= 6
uyn ann(z) e . (126)
So Eq. (125) becomes:
G ~ Su . (127)
n nn

,

Now we define Vv, to be elgenvectors of ﬂT, the transpose of L, and we

L
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introduce the following bracket notation, for arbitrary vector func-

tions T(z) and 5(z)

a0
- - -
<r, s> = r(z) « s(z) dz
0
Now it is clear that
~ Ay "1‘ - -
<v , Lu>=<L'"v , u>
m n m 11

If we let the eigenvalue of Vm be v so

I'T - -
L'"'v =v v |
m m m
then Eq. (129) becomes:
- -+ = - e
S v, u>=1r <v ,u>
n m n m
Finally we see:
~ 1 = e
3 = and <v o, u> =0
n Il m n
It is clear that
zn)
N
s
Fym)
ym
S0,
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0 F )
e - yn
v, u > = [ [F , F ] . dz = J [ 3 ] pA
m n zm' T ym F ym zZn Zm yn
0 zZn 0
(134)
Therefore, since Fyp = SnEyn [Eq. (127)],
1]
) @
g <vo,ou > = [Sn + sm] J FymFyn dz (135)
' 0
)
) =2SASs . (136)

L

For the case of waves on both sides of the boundary, let i represent

: the wave before the boundary aud U} represent the wave after it. Now
; the boundary condition (that Fy and F, be continuous) is expressed as
.
I o o

- — -4
: E un = E un . (137)
; n=1 n=1
:s

o0

fae)
+ - 44 o4
E <, u> = E v, U . (138)
m n m n

n=1 n=1

From Eq. (1l34) it is clear that:

|
E
5

0
M [S+ + s'] FVp” dgz (139) l
M1 n m n ym yn "
0 Y
LY
“
E
- [s+ + s'] z (140) '
m 1 mn

Y
\
]
]
3
N
]
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Using Eq. (136), th2 result is:

2st AT - }E: [s+ + s‘] . (141)
m m m n mmn

Now, using Eq. (126) we get:

O

—t +)2 .+ + =21k8 x
Al = [rm] £ (2)£(2) e dz (142)
0
+
-2iks x
_ [r*]z e meoat (143)
m m

where A, was previously defined [see Eq. (47)]. Now we write:

B ? L. —ile;+S;]x
o Fm Fn Lm(z)fn(z) e dz (l44)
0 _
. —ik[Sﬁ+S-]x
=T I %X e men (145)
m n mn
and it follows that:
.1 Z s” | ik[St—S;Jx
rto. E L+ 2 rx e UMW (146)
m +- + 1Y mn
24 S
m n=1 m

Consider:




From Eq. (46) we now have:

2
£ fl§ T A [[C-]z - [C+]2] £ 20 . (148)
m _ m

m n n
az dz

However, we have solved equations in thils form before, so it follows:

£ £ dz - -1 : (-1 . (149)

Thus the connecting formula across a sharp boundary at X is:

z Yol ik|st-sT
+ 1 1 - gm gn m m ®
Tn = 71k + =+ Tl ¢ : (150)
S A S -8
m m n=1 m n

RESULTS FOR TE.

Results for the TM case are presented in Sec. 4, in this subsec-
tion, we discuss some results for the TE case. 1In the TE case, we are
allowed to make some approximations that give us analytic solutions
for some important quantities. Unfortunately, we cannot find such
solutions in the TM case and so must proceed numerically. First, we

consider the derivative of Z; and C with respect to x, recalling that

9y = n, -1+ ¢ , (151)

It follows that

S n g
AN

qiqi = CC' , (152)

Thus,
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'o= —Zi cc' . (153)

To find C*, we take the derivative of the modal equation [Eq. (95)]

and find that

q_|2 q
Al R _ Bl _ 552

GComparing this to BEq. (l15) shows:

¢ o= L —lgﬂ Zr . (155)
2ik A CZ &
n ‘g

In Eq. (154), the (qg/C)2 dominates, and since |Z;j| << |kh|, then

i ., . oy .
-¢°© ikh = Zg . (156)

We integrate this directly to get

ﬁ [zgm)-zg(m]'

C(x) =C, e (157)

0

Equation (157) has been compared to the numerijical solution of the
modal equation [Eq. (95)! at 5, 25, and 50 kHz, and is valid to less
than 0.1 percent over a range in og from 4 S/m down to 1072 S/m.

We can use the above to study the coupling of TE modes. From

Eq. (60) it is clear than Kgyn/K,;, (where m # n) is the relative amount

of mode m coupled into moede n by the conductivity change from x to
% + dx. In this section we show that this is always very small, and
hence, that TE mode coupling is very small), as expected.

I1f we use the same reasoning as above, Eq. (115) can be ap-

proximated as

LA AN KRN AR X T o o Do T i ¢ A




2Ly %)
An =3 h [C] ,

then Eq. (122) becomes, for the TE case (recall m = n)

The diagonal term is

nn 2A

So we have

(158)

(159)

(160)

(l6l1)

(l62)

This approximation appears to be very accurate (greater than three

decimal places ai 20 kHz), when compared to the complete equation.

Dividing Eq. (159) by Eq. (162) ylelds:

Knm 21 Ci
— - — 7 - << 1
Knn kh “g C2 Vi

m el
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Thus, the off-diagonal terms are very small and we do not expect a W
large amount of mode coupling for the TE modes. In fact, using »

Eq. (157) it is fairly easy to show that Eq. (70) reduces to pohy

2

2 n 1
g (x) = -
i ikh n° - n® /5 (0) 5_(0) q

™
pen

(164) d

| &
Z

Therefore, l":s-

2
G _ 2 _=n 1

nm 2

2 e e e
ikh m° - n /Sm(O) Sn(O)

- ‘a'r'.':.
[Zg(x) ZB(O)] , (165) ) v

and

2 2

, 2°(x) - Z°(0)
¢'%) « -k o+ . (166) gﬁ:f‘
nm (kh) -

Using Eq. (86), we find that 1 + Qu(x) = 1. The total field, then, is

i 5.(0) (A (0) -1k f S (x') dx’ "."
E (z, x) =~ Z T s 0 YA m® enlz, %) e . N

n=1

(1e7) e

We know, however, that

A(0) q (0) C (x) Y.
VAn EROEROR (168) oy
n(X) 0 )qg\x {

and E-\\' ‘
Y




q_(12)
en(z, £) = Lcn(ﬁ)_ sin Ckh , (169)
so it follows that

A (Q) q_(0) C_(£) q_(¥£)

n_ _ o B B
e (z, £) = - - sin Ckh (170)

An(l) n Cn 0 qg(ﬂ) cn(z)

= e (z, 0)

We see, therefore, that the field has not changed significantly across

the boundary.

REFLECTIONS.

In this subsection, we consider the reflection term b, in
Eq. (58) and (59). We de this by defining a reflection coefficient R
such that

- 5 K ax’
b =Ra e nm ) (171)

With this definition, Eqs. (58) and (59) can be combined into

] H X ' = X t
’ S\ |, 2ik [ s dx 2ik fo s dx
R' = - -=— [R -e
L[‘l
v
1 . “m
- 3 Z[[Rn—R]gm+[L—RmRn] Eom §=0,
=1
1nrn

(172)

where
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B =5 B - (173)

The terms in the summation account for mode coupling and are clearly
second order. We have shown that, at least for TE, they can be

ignored. Thus, if we ignore mcde coupling, we get:

2
R(x) = [

X

, =21k [ s ax
s e ax’ . (174)

%]

N

[This form gives R(£) = 0, as required, since there can be no
reflected wave past x = [.} To determine the magnitude of R, notice
that the exponential term in Eq. (174) is less than one due to the
imaginary part of S (the attenuation). Since we do not expect the
attenuation to significantly affect the wave in the short distance of

the boundary, we write:

£
R(x) = J Soax (175)
X
which we solve directly as:
R(x) = % fn [S(L)Y/S5(x)] . (176)

The maximum reflections occur at x = 0, so,

N =

R(x) = R(0) = In [S(L)/S(0)] . (177)

Using the approximation for the TE mode--Lg. (157)--we can show (after
some manipulation), that if the change in Z, acrouss the boundary is

AZ then

g!
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i CO 2
R = 2kh Abg §8 . (178)

Thus, the condition for negation of rzflection is:
C, |2
11 0
—2' '—1 ~ AZgl l S_ | << 1 . (17%)

That condition is met in the TE case by all reasonable boundaries.

For the TM case, we can calculate the first-order term directly.
The reflection term |R| is the largest for the Brewster’'s mode where
C=2Zg. For a frequency of 30 kHz, |R| = 0.02 and changes little over
the VLF range.
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